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Abstract

This is a study of a two-dimensional airfoil including a cubic spring stiffness placed in an incompressible flow. A new

formulation of the harmonic balance method is employed for the aeroelastic airfoil to investigate the amplitude and

frequency of the limit cycle oscillations. The results are compared with the results from the classical harmonic balance

approach and from the conventional time marching integration method.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Limit cycle oscillations (LCOs) and bifurcations arising from a concentrated structural nonlinearity in the restoring

forces were first studied in Woolston et al. (1955) and Shen (1959). A comprehensive review of the bifurcations and

chaos of the three basic nonlinearities, namely, cubic, freeplay and hysteresis has been reported recently in Lee et al.

(1999b). The classical harmonic balance approach (Lee et al., 1997, 1999a) (including one dominant harmonic in the

analysis) sometimes called the describing function (DF) approach or the equivalent linearization technique (Zhao and

Yang, 1990) is often used to solve the equations of motion, but it cannot predict higher harmonic response (Price et al.,

1995; Lee et al., 2003).

It is of fundamental scientific interest to understand the nonlinear system response beyond the onset of flutter.

Moreover, in practice, some aircraft are operated beyond the flutter onset (e.g., the F-16). A major finding of the study

in Liu and Dowell (2004) is that a surprisingly large number of harmonics is needed to describe the LCOs after the

primary bifurcation for an airfoil with a cubic spring in the pitch degree of freedom. The high harmonics of the airfoil

motions were investigated by a higher order harmonic balance approach (Liu and Dowell, 2004). While this approach

generally yields accurate results for the amplitude and frequency of the LCOs, the algebra becomes very complex, and it

is not an easy task to derive the analytical expressions for the Fourier components when many high harmonics are

included in the analysis. Furthermore, this classical approach (called HB in this study) to the harmonic balance

formulation is typically difficult to implement for complex systems of equations such as those arising from Euler and

Navier–Stokes flows.
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Nomenclature

ah nondimensional distance from airfoil mid-

chord to elastic axis

b airfoil semi-chord

h plunge displacement

m airfoil mass

I identity matrix

ra radius of gyration about the elastic axis

t time

xa nondimensional distance from the elastic

axis to the center of mass

CLðtÞ aerodynamic lift coefficient

CM ðtÞ aerodynamic pitching moment coefficient

nh number of harmonics used in harmonic

balance method

GðxÞ plunge stiffness term

MðaÞ nonlinear pitch stiffness term

Q vector variable

U free stream velocity

U� nondimensional velocity U� ¼ U=boa

U�L linear flutter speed

a pitch angle of airfoil

b constant in nonlinear pitch stiffness

�i constant in Wagner’s function, i ¼ 1; 2
m airfoil/air mass ratio m ¼ m=prb2

x nondimensional plunge displacement x ¼
h=b

za viscous damping ratio in pitch

zx viscous damping ratio in plunge

t nondimensional time t ¼ Ut=b

fðtÞ Wagner’s function

ci constant in Wagner’s function, i ¼ 1; 2
o frequency of the motion

ō frequency ratio ō ¼ ox=oa

Subscripts

a value for pitch angle

x value for plunge deflection

Superscripts

ð Þ
0 first derivative with respect to time t
ð Þ
00 second derivative with respect to time t
ð̂ Þ variables in frequency domain
~ð Þ variables in time domain
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Recently, a new formulation (Thomas et al., 2002a,b; Hall et al., 2002) in terms of time-domain variables provides an

alternative approach to the HB method. It is referred to as the high dimensional harmonic balance (HDHB) approach

in this study. Instead of working in terms of the Fourier coefficient variables, the dependent variables in the HDHB

system are the motion values at 2nh þ 1 equally spaced sub-time levels over one cycle. The Fourier and time-domain

variables are in fact related to one another via a constant Fourier transformation matrix. Working in terms of sub-time

level variables circumvents the necessity of having to derive the analytical expressions of the Fourier coefficients

required in the classical HB approach. In fact, the HDHB approach is easy to formulate within the framework of an

existing time marching solver.

This is a follow-up study to that of Liu and Dowell (2004), focusing on a two-dimensional airfoil including a cubic

spring force placed in an incompressible flow. The theoretical model is formulated as a set of first order ordinary

differential equations. The HDHB approach is used to investigate the amplitude and frequency of the LCOs for the

aeroelastic airfoil. The results are then compared with the results from the classical HB approach.
2. Model equations

A schematic of the typical airfoil section of the wing is shown in Fig. 1(a) and a cubic structural nonlinearity of the

airfoil is shown in Fig. 1(b). There are two degrees of freedom: pitch angle a and plunge deflection x. For nonlinear
restoring forces with incompressible subsonic aerodynamics, the coupled equations for the airfoil in nondimensional

form are

x00 þ xaa00 þ 2zx
ō

U�
x0 þ

ō
U�

� �2

GðxÞ ¼ �
1

pm
CLðtÞ;

xa

r2a
x00 þ a00 þ 2za

1

U�
a0 þ

1

U�

� �2

MðaÞ ¼
2

pmr2a
CM ðtÞ. ð1Þ

An approximation to the Wagner function (Lee et al., 1999b) is used to model the aerodynamic generalized forces CLðtÞ
and CM ðtÞ. Four new variables (Lee et al., 1997) are introduced to eliminate the integral terms in the equations for the

aeroelastic system:

w1 ¼

Z t

0

e�e1ðt�sÞaðsÞds; w2 ¼

Z t

0

e�e2ðt�sÞaðsÞds;w3 ¼

Z t

0

e�e1ðt�sÞxðsÞds; w4 ¼

Z t

0

e�e2ðt�sÞxðsÞds, ð2Þ
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Fig. 1. (a) Two-degree-of-freedom airfoil motion; (b) cubic hardening spring.
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where the Wagner function fðtÞ is given by Jones’ approximation (Jones, 1940):

fðtÞ ¼ 1� c1e
�e1t � c2e

�e2t,

with the constants c1 ¼ 0:165, c2 ¼ 0:335, e1 ¼ 0:0455, and e2 ¼ 0:3. This study focuses on the hardening spring in the

pitch degree of freedom. Therefore, the pitch and plunge stiffness are Mðx1Þ ¼ x1 þ bx3
1 and Gðx3Þ ¼ x3.

System (1) can then be rewritten in a general form containing only differential operators as

c0x
00
þ c1a00 þ c2x

0
þ c3a0 þ ðc4 þ c10Þxþ c5aþ c6w1 þ c7w2 þ c8w3 þ c9w4 ¼ 0;

d0x
00
þ d1a00 þ d2x

0
þ d3a0 þ d4xþ d5aþ d6w1 þ d7w2 þ d8w3 þ d9w4 þ d10a3 ¼ 0;

w01 ¼ a� e1w1;

w02 ¼ a� e2w2;

w03 ¼ x� e1w3;

w04 ¼ x� e2w4:

8>>>>>>>>><
>>>>>>>>>:

(3)

The coefficients c0, c1; . . . ; c10, d0, d1; . . . ; d10 are functions of system parameters, and the expressions are given in the

Appendix.
3. Harmonic balance analysis

In the HB approach, the motions are assumed as their Fourier expansions with a finite number of harmonic terms:

aðtÞ ¼ â0 þ
Xnh

n¼1

½â2n�1 cosðnotÞ þ â2n sinðnotÞ�; xðtÞ ¼ x̂0 þ
Xnh

n¼1

½x̂2n�1 cosðnotÞ þ x̂2n sinðnotÞ�,

wiðtÞ ¼ ŵi
0 þ

Xnh

n¼1

½ŵi
2n�1 cosðnotÞ þ ŵi

2n sinðnotÞ�; ði ¼ 1; 2; 3; 4Þ. ð4Þ

In vector form, the Fourier coefficients variables are

Q̂a ¼

â0
â1

..

.

â2nh

0
BBBBB@

1
CCCCCA; Q̂x ¼

x̂0
x̂1

..

.

x̂2nh

0
BBBBB@

1
CCCCCA; Q̂wi

¼

ŵi
0

ŵi
1

..

.

ŵi
2nh

0
BBBBB@

1
CCCCCA; i ¼ 1; 2; 3; 4.
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Substituting (4) into system (1) and balancing the Fourier coefficients of the first nh harmonics yields

ðc0o2A2 þ c2oAþ c4Iþ c10IÞQ̂x þ ðc1o2A2 þ c3oAþ c5IÞQ̂a þ
P4

i¼1ciþ5Q̂wi
¼ 0;

ðd0o2A2 þ d2oAþ d4IÞQ̂x þ ðd1o2A2 þ d3oAþ d5IÞQ̂a þ
P4

i¼1diþ5Q̂wi
þ d10M̂a ¼ 0;

ðoAþ e1IÞQ̂w1
� Q̂a ¼ 0;

ðoAþ e2IÞQ̂w2
� Q̂a ¼ 0;

ðoAþ e1IÞQ̂w3
� Q̂x ¼ 0;

ðoAþ e2IÞQ̂w4
� Q̂x ¼ 0;

8>>>>>>>>>>><
>>>>>>>>>>>:

(5)

where I is an identity matrix with dimension ð2nh þ 1Þ � ð2nh þ 1Þ, and M̂a is for the Fourier components

of a3; A is a constant matrix related to nh, and the expression is given in the Appendix. The last four equations

in (5) for Q̂wi
ði ¼ 1; 2; 3; 4Þ can be easily solved. Substituting the results into the first two equations in (5) reduces the

system to

A1Q̂a þ B1Q̂x ¼ 0;

A2Q̂a þ B2Q̂x þ d10M̂a ¼ 0;

(
(6)

where Ai and Bi (i ¼ 1; 2) are ð2nh þ 1Þ � ð2nh þ 1Þ matrices with entries as functions of system parameters and the

fundamental frequency o. The expressions for Ai and Bi (i ¼ 1; 2) are in the Appendix. The first equation of system (6)

can be solved as Q̂x ¼ �B
�1
1 A1Q̂a. The above HB system is then further reduced to a 2nh þ 1 dimensional system:

ðA2 � B2B
�1
1 A1ÞQ̂a þ d10M̂a ¼ 0. (7)

The computation of the inverse for B1 is straightforward as the matrix is block diagonal. More details can be found in

the Appendix.

For the hardening spring, the static motion is always zero. For LCOs, the phase of the first harmonic in pitch may be

fixed at zero. Therefore, it can be assumed that â0 ¼ 0 and â1 ¼ 0. With this assumption, there are 2nh equations in (7)

and 2nh unknowns including the fundamental frequency o. The above system is solved in Liu and Dowell (2004) for nh

up to 17.

When nh increases, it is difficult to obtain analytical expressions for the Fourier components of a3 which are required

in M̂a in the HB system. This difficulty is overcome in the HDHB approach as the system is converted to the time

domain with sub-time level variables:

ðc0o2G2
þ c2oGþ c4Iþ c10IÞ ~Qx þ ðc1o2G2

þ c3oGþ c5IÞ ~Qa þ
P4

i¼1ciþ5
~Qwi
¼ 0;

ðd0o2G2
þ d2oGþ d4IÞ ~Qx þ ðd1o2G2

þ d3oGþ d5IÞ ~Qa þ
P4

i¼1diþ5
~Qwi
þ d10

~Ma ¼ 0;

ðoGþ e1IÞ ~Qw1
� ~Qa ¼ 0;

ðoGþ e2IÞ ~Qw2
� ~Qa ¼ 0;

ðoGþ e1IÞ ~Qw3
� ~Qx ¼ 0;

ðoGþ e2IÞ ~Qw4
� ~Qx ¼ 0;

8>>>>>>>>>><
>>>>>>>>>>:

(8)

where G ¼ E�1AE is a constant matrix related to the Fourier transform matrix E. The expressions for E and E�1 are

given in the Appendix. The time domain solutions are given as follows:

~Qa ¼

aðt0Þ

aðt1Þ

..

.

aðt2nh
Þ

0
BBBBB@

1
CCCCCA;

~Qx ¼

xðt0Þ

xðt1Þ

..

.

xðt2nh
Þ

0
BBBBB@

1
CCCCCA; ~Ma ¼

a3ðt0Þ

a3ðt1Þ

..

.

a3ðt2nh
Þ

0
BBBBB@

1
CCCCCA,

and ti ¼ i2p=ð2nh þ 1Þ, ði ¼ 0; 1; 2; . . . ; 2nhÞ. System (8) is easy to implement in a computer program, and requires only

the rearrangement of the arrays in a conventional time-marching integration program. From the study in Liu et al.

(2006) the equivalent system of the HDHB system in the frequency domain may be obtained by simply replacing the

nonlinear term M̂a in (7) by EðE�1Q̂aÞ
3:

ðA2 � B2B
�1
1 A1ÞQ̂a þ d10EðE

�1Q̂aÞ
3
¼ 0. (9)
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Although system (9) is in the frequency domain, the difficult part of the HB approach, i.e., the algebraic computation of

the individual Fourier component of a3, is avoided. Therefore, the computation time in the HDHB method is less than

that in the HB method, and the difference becomes more significant when many high harmonics are included in the

investigation. Similar to the procedure in obtaining the HB solutions, â1 is assumed zero. System (9) is then solved for

âi ði ¼ 0; 2; 3; . . . ; 2nhÞ and the response frequency o.

4. Results and discussions

In this study, the system parameters under consideration are m ¼ 100, ra ¼ 0:5, ah ¼ �0:5, za ¼ zx ¼ 0, ō ¼ 0:2,
xa ¼ 0:25 and b ¼ 80. The detailed results from the conventional time marching and HB methods for this case have

been obtained in a previous study (Liu and Dowell, 2004). The main interest is the secondary bifurcation for a velocity

ratio (flow velocity over linear flutter speed) near 2. The response frequency decreases continuously before the

secondary bifurcation, then drops rapidly from 0.06 to 0.04 at the secondary bifurcation, and then the frequency

remains at 0.04 for larger velocities. At the secondary bifurcation, besides the rapid increasing of the amplitude, the

motion type for the pitch angle changes from one peak per cycle to three peaks per cycle. The plunge motion remains

one peak per cycle while the amplitude is almost doubled for a velocity ratio near 2. It is found in previous study (Liu

and Dowell, 2004) that nine harmonics have to be included in the HB analysis in order to detect the secondary

bifurcation.

The numerical time marching results reported here are obtained by using the fourth order Runge–Kutta scheme, and

the initial condition is að0Þ ¼ 1:0� and a0ð0Þ ¼ xð0Þ ¼ x0ð0Þ ¼ 0. The results are shown in Figs. 2–10 as open circles to
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Fig. 2. The frequency o from the HB method with various numbers of harmonics included in the analysis, in comparison with the time

marching results: �, HB1; r, HB3; þ, HB5; �, time marching.
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results. The symbols are the same as those in Fig. 2.
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compare with the HB and HDHB methods with various numbers of harmonics. In these figures, all the variables are

non-dimensional except the pitch angle a which is converted to degree.

For the computation of the HB and HDHB solutions, the velocity ratio increases gradually from 1 to 4, while the

solution from the lower velocity is used as the initial starting solution for the nonlinear solver. For the motions before the

secondary bifurcation, the increment in flow velocity could be relatively large, e.g., 0.1. The size of the increment velocity

becomes crucial for the motions near the secondary bifurcation. For example, for the HDHB solutions with 14 harmonics

included in the system, the incremental step needs to be 0.0001 for the flow velocities near the secondary bifurcation.

4.1. HB results

The HB solutions for the amplitudes of the zeroth and even harmonics are zero. Therefore, the HB results with an

odd number of harmonics are reported. The frequency solutions from the HB system with one harmonic (HB1), three

harmonics (HB3) and five harmonics (HB5) are displayed in Fig. 2, in comparison with the time marching results

denoted by open circles. The HB1 solutions denoted by crosses decrease very slowly and remain above 0.07 when the

velocity increases. The discrepancy of the HB1 approximation from the time marching motions becomes evident for a

velocity ratio near 1.2, and the deviation enlarges as the velocity increases. The HB3 solutions denoted by triangles

improve upon the HB1 results as the deviation starts to appear for a velocity ratio near 1.4. Nonetheless, the HB3 curve

is smooth and remains above 0.06. The HB5 solutions denoted by pluses match well with the time marching motions

before the secondary bifurcation, i.e., U�=U�L ¼ 2. However, the HB solutions in Fig. 2 are smooth and do not detect

the secondary bifurcation.

The pitch and plunge amplitudes from the HB1, HB3 and HB5 for the motions before the secondary bifurcation are

close and match the time-marching results well, as shown in Fig. 3. For the pitch motion, the amplitudes from HB1,

HB3 and HB5 solutions remain the same and keep increasing gradually for the velocity after the secondary bifurcation,

except that two more peaks per cycle occur for the HB5 motions for velocities beyond 3U�L. For the plunge motion, the

difference between the HB1, HB3 and HB5 solutions becomes large for velocities beyond the secondary bifurcation.

Nonetheless, no jump has been detected in the amplitudes of the pitch and plunge motions, which is consistent with the

frequency response.

The results shown in Fig. 4 from the HB method with seven harmonics (HB7) included in the analysis begin to show

the evidence of the secondary bifurcation. Two continuous curves are found in the frequency response. One decreases

gradually from 0.090 to 0.038. The other curve covers the straight line 0.042, which is the frequency curve for the

motions after the secondary bifurcation. However, the latter curve, which has not been discovered in previous study

(Liu and Dowell, 2004), is very hard to obtain, as the appropriate initial starting points for the nonlinear solver are

within a narrow range. Consistent with the frequency prediction curve, parts of the pitch amplitudes from the HB7

solutions match the time-marching results.

The HB solutions with nine harmonics (HB9) clearly detect the secondary bifurcation, and the results are shown in

Fig. 5 for the frequency, pitch and plunge motions in comparison with the time marching results. For the frequency,

first the HB9 solution decreases as the velocity increases, until it reaches the value 0.042, it then decreases and increases

as the velocity decreases from 2:3U�L to 1:85U�L. Finally at U�=U�L ¼ 1:85 it turns back to 0.042 and remains on the

straight line for U� up to 4U�L. The HB9 prediction for the frequency is a single twisted curve, and it detects the

secondary bifurcation, and matches the time marching results well for the motions before and after the secondary

bifurcation. Correspondingly, the HB9 solutions for the pitch and plunge motions amplitudes also detect the secondary

bifurcation and match the time marching results well.

4.2. HDHB results

The HDHB solutions for the coefficients of the zeroth and eventh harmonics are usually nonzero. Therefore, unlike

the HB solutions, the solutions from the HDHB method with one harmonic (HDHB1) are different from the HDHB

solutions when two harmonics are included (HDHB2), which are different from the HDHB solutions when three

harmonics are included (HDHB3). Overall, the more harmonics included in the HDHB system, the more accurate the

HDHB solutions are. Compared to the HB solutions, the HDHB solutions when 2n harmonics are included in the

analysis (HDHB2n) are close to the HB solutions when n harmonics are included (HBn), while the HDHB solutions

when less than 2n harmonics are included are usually less accurate than the HB solutions when n harmonics are

included.

The frequency solutions from the HDHB method with two harmonics (HDHB2), six harmonics (HDHB6) and 10

harmonics (HDHB10) are displayed in Fig. 6. The results from the HDHB method with one harmonic (HDHB1) are
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Fig. 5. The frequency, pitch and plunge peak values from the HB method with nine harmonics, in comparison with the time-marching

results: �, time marching; �, HB9.
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above the HDHB2 solutions denoted by crosses in Fig. 6. The HDHB results from the HDHB method with three, four

and five harmonics are above the HDHB6 solutions denoted by triangles and below the HDHB2 solutions by cross in

Fig. 6. Similarly, the results from the HDHB method with seven, eight and nine harmonics are between the HDHB6

and HDHB10 solutions. Comparing the HDHB solutions in Fig. 6 with the HB solutions in Fig. 2, one finds that the

HDHB2 solutions are close to the HB1 solutions, the HDHB6 solutions are close to the HB3 solutions, and the
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HDHB10 solutions are close to the HB5 results. The HDHB2 results are a bit worse than the HB1 prediction, in the

sense that the HDHB2 solution increases right after the primary bifurcation, while the HB1 solution decreases and

follows the time-marching results. For the velocities before the secondary bifurcation, the HDHB6 solutions are bit

better than those from the HB3 method. This is also true when the HDHB10 solutions are compared with the HB5

results.

Similar to the HB1 and HB3 solutions for the pitch and plunge motions amplitudes, the amplitudes from the HDHB2

and HDHB6, as shown in Fig. 7, also increase continuously for the velocities beyond the secondary bifurcation.

From the HDHB10 solutions for the pitch motion peak values, the change of the motion type from one peak per cycle

to three peaks per cycle starts to occur as early as U�=U�L ¼ 2:5, while this change does not occur until U�=U�L ¼ 3:0 in

the HB5 solutions. Note that in Fig. 6 the frequency solutions from the HDHB10 method for velocities beyond 3U�L are

close to the time-marching results, but the solutions for the amplitudes in Fig. 7 are very different from the time-

marching results. Therefore, the secondary bifurcation is not captured by the HDHB method with less than 10

harmonics.

The HDHB solutions when 11, 12 and 13 harmonics are included in the analysis are not as accurate as the HB7

solutions. In particular, the motions after the secondary bifurcation cannot be captured by the HDHB method with the

number of harmonics less than 14. Since there are two disconnected branches in the HB7 prediction and part of one

branch does capture the motions after the secondary bifurcation, it is interesting to observe the HDHB solutions when

14 harmonics are included (HDHB14). The frequency, pitch and plunge motion peak values are shown in Fig. 8. The
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marching results: �, time marching; �, HDHB14.
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structure of the HDHB14 solutions for velocities between 1:85U�L and 2:5U�L is complex, and the solutions are

relatively difficult to obtain. To obtain a convergent solution from the nonlinear solver for solutions near the

secondary bifurcation, the increment for the velocity ratio needs to be very small (0.001). From the frequency

graph in Fig. 8, it seems that there is a branch that twists to a straight line at o ¼ 0:042. However, a zoomed

view shows us that there are two discontinuities in that curve. The discontinuities can hardly be seen in the pitch

and plunge motion peak values. Nonetheless, the time-marching results for the motions after the secondary

bifurcation are matched by some of the HDHB14 solutions, which is confirmed in the frequency and the motion peak

values in Fig. 8.

Including one more harmonic in the HDHB method, i.e., HDHB15, improves upon the HDHB14 solutions (and thus

the HB7 solutions) substantially. The results from the HDHB15 system are plotted in Fig. 9 for the frequency and the

motion peak values. From the frequency graph, the HDHB15 prediction is a single twisted curve that covers all the

time-marching results. However, the unstable branch in the hysteresis is not as smooth as that in the HB9 prediction.

This is again confirmed in the HDHB15 solutions for the pitch and plunge motion peak values. The motions after the

secondary bifurcation are successfully detected in the HDHB15 solutions. Furthermore, the HDHB15 solutions are

easier to obtain, compared to the procedure in obtaining the HDHB14 solutions, in the sense that the appropriate initial

starting points for the nonlinear solver are within a larger range.

The results from the HDHB method when 16 (HDHB16) or 17 harmonics (HDHB17) are included in the analysis are

similar to the HDHB15 solutions. The HDHB solutions with 18 harmonics (HDHB18) are close to the HB9 solutions,

where a clear single smooth twisted curve is found for the frequency prediction. The HDHB18 results are shown in

Fig. 10 for the frequency and the motion peak values in comparison with the corresponding time marching results. For

the frequency, the twisting loop is smaller than that in the HB9 prediction in Fig. 5. Comparing the HDHB18 results in

Fig. 10 with the corresponding HB9 results in Fig. 5, we find that the HDHB18 results are more accurate than the HB9

solutions, in the sense that the HDHB18 solutions are closer to the time-marching results.
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Fig. 9. The frequency, pitch and plunge peak values from the HDHB method with 15 harmonics, in comparison with the time-

marching results: �, time marching; �, HDHB15.
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5. Conclusions

For small amplitude motions near the primary bifurcation, the HDHB and HB solutions are close to the time-

marching results. For the motions away from the primary bifurcation, the discrepancy between the time-marching

results with the HB/HDHB solutions becomes significant. The more harmonics taken into consideration in the analysis,

the more accurate are the results obtained from the HB/HDHB methods. The result from the classical HB method is

more accurate than that from the HDHB method when the same number of harmonics are included in the analysis. In

order to obtain the same order accuracy, the number of the harmonics included in the HDHB method needs to be twice

the number included in the HB method. The fact that the results from the HDHB2n system are as accurate as those

from the HBn system is due to the cubic nonlinearity. The number of harmonics needed in the HDHB method (for the

solutions as accurate as those from the HB method) varies for different nonlinearities. For instance, for a quadratic

nonlinearity, the number of the harmonics included in the HDHB method is less than twice the number included in the

HB method for the same order accuracy. More details of this will be presented in a future study.

For the prediction of the secondary bifurcation which occurs for velocities almost twice the linear flutter

speed, at least seven harmonics need to be included in the HB analysis, while 14 harmonics are needed in the HDHB

analysis. To obtain a continuous transition (a clear loop in the prediction curve) from the primary bifurcation to the

secondary bifurcation, nine harmonics are required in the HB analysis, while 15 harmonics are needed in the HDHB

analysis.

On the other hand, the HB system is difficult to derive when the number of high harmonics is large, while the HDHB

system is easy to derive and to implement into a computer program regardless of the number of harmonics included in

the analysis. Since the variable in the HDHB analysis are the time domain solutions, this method is suitable and efficient

for high dimensional systems with various nonlinearities, for which the HB method may be practically impossible to

implement.
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Fig. 10. The frequency, pitch and plunge peak values from the HDHB method with 18 harmonics, in comparison with the time-

marching results: �, time marching; �, HDHB18.
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Appendix

The coefficients in Eq. (3) are:

c0 ¼ 1þ
1

m
; c1 ¼ xa �

ah

m
; c2 ¼ 2zx

ō
U�
þ

2

m
ð1� c1 � c2Þ,

c3 ¼
1

m
ð1þ ð1� 2ahÞð1� c1 � c2ÞÞ; c4 ¼

2

m
ð�1c1 þ �2c2Þ,

c5 ¼
2

m
ð1� c1 � c2 þ

1

2
� ah

� �
ð�1c1 þ �2c2ÞÞ; c6 ¼

2

m
�1c1 1� �1

1

2
� ah

� �� �
,

c7 ¼
2

m
�2c2 1� �2

1

2
� ah

� �� �
; c8 ¼ �

2

m
�21c1; c9 ¼ �

2

m
�22c2; c10 ¼

ō
U�

� �2

;

d0 ¼
xa

r2a
�

ah

mr2a
; d1 ¼ 1þ

1þ 8a2h
8mr2a

; d2 ¼ �
1

mr2a
ð1þ 2ahÞð1� c1 � c2Þ,

d3 ¼ 2za
1

U�
þ

1

2mr2a
ð1� 2ahÞ �

1

2mr2a
ð1þ 2ahÞð1� 2ahÞð1� c1 � c2Þ,
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d4 ¼ �
1

mr2a
ð1þ 2ahÞð�1c1 þ �2c2Þ,

d5 ¼ �
1

mr2a
ð1þ 2ahÞð1� c1 � c2Þ �

1

2mr2a
ð1þ 2ahÞð1� 2ahÞðc1�1 � c2�2Þ,

d6 ¼ �
1

mr2a
ð1þ 2ahÞc1�1 1� �1

1

2
� ah

� �� �
; d7 ¼ �

1

mr2a
ð1þ 2ahÞc2�2 1� �2

1

2
� ah

� �� �
,

d8 ¼
1

mr2a
ð1þ 2ahÞc1�

2
1; d9 ¼

1

mr2a
ð1þ 2ahÞc2�

2
2; d10 ¼

1

U�

� �2

.

A is given by

A ¼

0

J1

J2

. . .

Jnh

0
BBBBBB@

1
CCCCCCA

(10)

and

Jn ¼ n
0 1

�1 0

� �
; n ¼ 1; 2; . . . ; nh.

Solving the first equation of (5) for Q̂x and substituting the solution into the second equation of (5) yields the reduced

HB system (6), where

A1 ¼ c1o2A2 þ c3oAþ c5Iþ c8ðoAþ e1IÞ
�1
þ c9ðoAþ e2IÞ

�1,

A2 ¼ d1o2A2
þ d3oAþ d5Iþ d8ðoAþ e1IÞ

�1
þ d9ðoAþ e2IÞ

�1,

B1 ¼ c0o2A2
þ c2oAþ c4Iþ c6ðoAþ e1IÞ

�1
þ c7ðoAþ e2IÞ

�1,

B2 ¼ d0o2A2 þ d2oAþ d4Iþ d6ðoAþ e1IÞ
�1
þ d7ðoAþ e2IÞ

�1. ð11Þ

Denote BðeÞ ¼ oAþ eI. From (10),

BðeÞ ¼

e

L1ðeÞ

L2ðeÞ

. . .

Lnh
ðeÞ

0
BBBBBB@

1
CCCCCCA
, (12)

with

LnðeÞ ¼
e no

�no e

� �
; n ¼ 1; 2; . . . ; nh.

Therefore, the inverse of B is CðeÞ ¼ B�1ðeÞ:

CðeÞ ¼

1
e

L�11 ðeÞ

L�12 ðeÞ

. . .

L�1nh
ðeÞ

0
BBBBBBB@

1
CCCCCCCA
, (13)

with

L�1n ðeÞ ¼
1

e2 þ ðnoÞ2
e �no

no e

� �
; n ¼ 1; 2; . . . ; nh.
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Substituting (13) into (11) yields the expressions for Ai and Bi (i ¼ 1; 2):

A1 ¼ c1o2A2 þ c3oAþ c5Iþ c8Cðe1Þ þ c9Cðe2Þ,

A2 ¼ d1o2A2 þ d3oAþ d5Iþ d8Cðe1Þ þ d9Cðe2Þ,

B1 ¼ c0o2A2 þ c2oAþ c4Iþ c6Cðe1Þ þ c7Cðe2Þ,

B2 ¼ d0o2A2
þ d2oAþ d4Iþ d6Cðe1Þ þ d7Cðe2Þ. ð14Þ

In system (8) and (9), G ¼ E�1AE, the Fourier transform matrix is

E ¼
2

2nh þ 1

1
2

1
2

. . . 1
2

cos t0 cos t1 . . . cos t2nh

sin t0 sin t1 . . . sin t2nh

cos 2t0 cos 2t1 . . . cos 2t2nh

sin 2t0 sin 2t1 . . . sin 2t2nh

..

. ..
. ..

.

cos nht0 cos nht1 . . . cos nht2nh

sin nht0 sin nht1 . . . sin nht2nh

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

,

and E�1 is given by

1 cos t0 sin t0 . . . cos nht0 sin nht0

1 cos t1 sin t1 . . . cos nht1 sin nht1

..

. ..
. ..

. ..
. ..

.

1 cos t2nh
sin t2nh

. . . cos nht2nh
sin nht2nh

0
BBBBB@

1
CCCCCA.
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